
Progressive Volume Rendering of Unstructured Grids

Abstract

Steven P. Callahan¹, Valerio Pascucci², Cláudio T. Silva¹
¹ Scientific Computing and Imaging Institute, University of Utah

² Center for Applied Scientific Computing , Lawrence Livermore National Laboratory

This work was performed under the auspices of the U. S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

Introduction

Method

Results

UCRL-POST-214075

f1

f2

f3

f1

f2

f3

1

3

2

4

1

2

Framebuffer Transfer Function

k-Buffer k-Buffer

fnew

1) Read Textures 2) Sort Fragments 3) Lookup Color
and Opacity

4) Composite Color
and Write Textures

Exact Approximation

Progressive
Front

Front
Fragments

Back
Fragments

We describe a new progressive technique that allows real-time rendering of large tet-
rahedral meshes. Our approach incrementally refines the quality of the volume ren-
dering until it converges on the final image. The results from the previous refinement
steps are re-used in each subsequent refinement, thus leading to an efficient render-
ing. By operating on a simple set of triangular faces, our algorithm allows a robust and
straightforward graphics hardware (GPU) implementation. Because the mesh is ren-
dered in steps, interactive rendering is possible for a wide range of data sets and hard-
ware configurations .

The k-buffer algorithm: A fixed number of fragments are stored as textures on
the GPU. As a new fragment is rasterized, the closest two fragments are used to
lookup color and opacity which are composited into the framebuffer.

Progressive volume rendering: The progressive front traverses the mesh in front-
to-back order. A progressive image is created by combining the finished region
with an approximation of the unprocessed space between the boundaries.

Interactive visualization of large unstructured grids has been a goal of the research
community for many years. With the advent of programmable graphics processing
units, volume rendering large grids has become a reality. However, the need still exists
to render even larger meshes interactively.

Our progressive algorithm is based on the Hardware-Assisted Visibility Sorting algo-
rithm [1], which operates on the triangles that compose the tetrahedra. In image-
space, sorting is performed using a fragment stream sorter called the k-buffer. Our al-
gorithm works by dividing the load between a client and a server. The server incre-
mentally transmits a stream of triangles while the client renders these triangles using
the k-buffer. At each incremental step, a progressive image is displayed using the re-
sults of all the previous steps with an approximation of the unprocessed portion of the
mesh. The result is a system that can handle arbitrarily large meshes interactively
while still allowing full-quality volume renderings.

The images shown below contain the results of our progressive volume rendering
using five refinement steps. Preliminary results show that our progressive algorithm is
extremely useful for visualizing large data sets interactively. In fact, most of the impor-
tant features in the volume can be detected very early in the refinement process.

To further improve our technique, we need to explore the use of compression for the
transmission of the triangle stream. In addition, through the use of cache-efficient lay-
outs, we believe that data traversal can be optimized on the client side.

References:
[1] S. P. Callahan, M. Ikits, J. L. D. Comba, and C. T. Silva. Hardware-Assisted Visibility Ordering for Unstructured
Volume Rendering. In IEEE Transactions on Visualization and Computer Graphics, 11(3):285-295, 2005.

Server:
 • For each viewpoint
 • Stream boundary triangles
 • Stream remaining triangles in front-to-back order
Client:
 • For every boundary triangle received from server
 • Rasterize triangle
 • For every fragment rasterized
 • If front or back fragment, insert into k-buffer
 • For every group of triangles received from server
 • Rasterize triangle
 • For every fragment rasterized
 • Insert fragment into k-buffer
 • Find closest two fragments, composite their contribution into exact buffer
 • For every pixel in k-buffer
 • Find front and back fragments, composite their contribution into approximate buffer
 • Composite exact buffer over approximate buffer and display to screen
 • Clear approximate buffer

Step 1 Step 2 Step 3 Step 4 Step 5

Results: Five progressive steps of the Langley Fighter data set consisting of 1.4
million tetrahedra. The first step contains only the boundary faces and the last
step contains the whole mesh.

